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What is memorization?

Rote learning (memorization)

Meaningful learning (pattern-based)

e Memorization doesn’t capitalize on patterns in data (content agnostic)
e Operational definition: behaviour of DNNs trained on random data
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Context: “Understanding Deep Learning Requires
Rethinking Generalization™ - Zhang et al. 2017 [1]

e Shows: DNNs can fit random labels
... S0 are DNNs using “brute-force memorization”?
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Context: “Understanding Deep Learning Requires
Rethinking Generalization™ - Zhang et al. 2017 [1]

e Shows: DNNs can fit random labels
... S0 are DNNs using “brute-force memorization”?
e My main take-away:
We need data-dependent explanations of DNN
generalization ability (...and recent work [2] provides
this!)

[2] “Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many
More Parameters than Training Data” Dziugaite and Roy (2017)
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Compare and Contrast

Our work Zhang et al. [1]

e Focuses on differences in learning e Focuses on similarities

noise/data

e Conclude DNNs don't just e Suggests DNNs might use
memorize real data memorization to fit data

e Training time is more sensitive to e Training time increases by a
capacity and #examples on noise constant factor on noise

e Regularization can target e Regularization doesn’t explain
memorization generalization
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Overview of experiments:

1. Qualitative differences in fitting noise vs. real data
2. Deep networks learn simple patterns first
3. Regularization can reduce memorization

Notation:

1. randX - random inputs (i.i.d. Gaussian)
2. randY - random labels
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Experiments (1a): Differences in fitting noise vs. real data
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Figure 1. Average (over 100 experiments) misclassification rate
for each of 1000 examples after one epoch of training.
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Interpretation:

In real data, easy examples
match underlying patterns of
the data distribution; hard
examples are exceptions to
the patterns.

In random data, examples are
all ~equally hard: learning is
content agnostic
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Experiments (1b): Differences in fitting noise vs. real data

Interpretation:

Meaningful features can be learned by predicting noise
(see also: [3] “Unsupervised Learning by Predicting Noise.” Bojanowski, P. and Joulin, A. ICML 2017)

Figure 2. Filters from first layer of network trained on CIFAR10
(left) and randY (right).
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Experiments (1c): Differences in fitting noise vs. real data

Similar to [4] “Understanding black-box
predictions via influence functions.”
Koh and Liang (ICML 2017)

Per-class loss-sensitivity (g); a cell i,j represents the average loss-sensitivity of
examples of class i w.r.t. training examples of class j. Left is real data, right is
random data. Loss-sensitivity is more highly class-correlated for random data.

David Krueger & MILA o



Experiments (1c): Differences in fitting noise vs. real data

Interpretation:

On real data, more patterns
10 (e.g. low-level features) are

shared across classes.

o (This is a selling-point of deep
distributed representations!)

Per-class loss-sensitivity (g); a cell i,j represents the average loss-sensitivity of
examples of class i w.r.t. training examples of class j. Left is real data, right is
random data. Loss-sensitivity is more highly class-correlated for random data.

David Krueger # MILA 1



Experiments (1d): Differences in fitting noise vs. real data
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Experiments (2a): DNNs learn simple patterns first

Critical sample ratio: how many
data-points have an adversarial example
nearby?

arg max; f;(x) # arg max; f;(Xx)

Interpretation:
Learned hypotheses are less complex for
real data

See [6] “Robust large margin deep neural networks.”
Sokolic et al.

David Krueger

0.8

0.7

o
=)

o
L

Critical Sample Ratio
o o
w =

0.2
a1 £
;

0.0 ¢

20 40 60 80
Epochs

....... cifarl0_randval
randX

= randY
100

120 140

§ MILA 12



Experiments (2b): DNNs learn simple patterns first

SOLID: trainset dashed: valid (real data only)
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(b) Noise added on classification labels.
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Experiments (3): Regularization can Reduce Memorization
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We can severely limit memorization without
hurting learning!

Adversarial training (+dropout) is particularly
effective, supporting use of critical sample
ratio to measure complexity
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Conclusions

1. Qualitative differences in fitting noise vs. real data
2. Deep networks learn simple patterns first
3. Regularization can reduce memorization
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QUESTIONS?

[1] “Understanding deep learning requires rethinking generalization.” Zhang, Chiyuan, Bengio, Samy,
Hardt, Moritz, Recht, Benjamin, and Vinyals, Oriol. ICLR 2017 (best paper award)

[2] “Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many
More Parameters than Training Data” Dziugaite, Gintaire and Roy, Daniel M. arXiv 2017

[3] “Unsupervised Learning by Predicting Noise.” Bojanowski, P. and Joulin, A. ICML 2017

[4] “Understanding black-box predictions via influence functions.” Koh, Pang Wei and Liang, Percy. ICML
2017 (best paper award)

[5] “Robust large margin deep neural networks.” Sokolic, Jure, Giryes, Raja, Sapiro, Guillermo, and
Rodrigues, Miguel RD. 2016.

[6] “Adversarial examples in the physical world.” Kurakin, Alexey, Goodfellow, lan, and Bengio, Samy.
ICLR 2017

Come to the poster (105) for even more experiments!!
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Experiments (1e): Differences btw fitting noise vs. real data
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number of hidden units per layer

Interpretation:

More effective capacity is
needed to fit random data
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